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Abstract—The model of the axial and torsional vibrations for
a drillstring with distributed parameters is obtained using the
variational approach within the Hamiltonian Mechanics. Further
there is considered the model of the axial vibrations which is a
linear system with control and perturbation input signals. To
the aforementioned equations of the model a system of equations
with deviated argument is associated by integration along the
characteristics. The system with deviated argument is of neutral
type and allows construction of the basic theory but has its
difference operator marginally (critically, not strongly) stable.
This aspect is discussed finally and suggests the use of the
methodology of the singular perturbations.

Index Terms—Distributed Systems, Linear Systems, Industrial
Applications

I. INTRODUCTION. PROBLEM STATEMENT

Progress of the oil extracting industry is accompanied
by such unpleasant phenomena as vibrations of the drilling
equipment. These vibrations turn to be the main cause of
equipment breaking which is a constant source of material
and financial losses. Consequently the scientific and technical
concern for vibration analysis and vibration quenching has
become an urgent task. The last years witnessed an increase
of research production and research literature on the subject,
implying more and more the automatic control. We mention
here but a quite recent reference having itself a long list
of references [1]. References of two recently accepted PhD
theses [2], [3] can complete the image of the recent progress
in the field.

The development of research has pointed out two main di-
rections: dynamics modeling and control of vibration quench-
ing. The first direction of research focuses on distributed
parameters for the drill and on nonlinear representation for
the rock-bit interaction. The second direction of research
is control of vibrations. Basically vibration quenching via
feedback control reduces to the increase of a variable damping
factor using the control of the electrical drive. With respect to
control one can mention adaptive control [4], H. control [5],
methods derived from standard methods [6], standard torque
control and other. Worth mentioning that drive analysis for the
control can make the phenomena representation even more
complex: replacement of the d.c. drives by a.c. induction
motors can be a source of hidden oscillations [7].

For these reasons the present paper will focus on distributed
parameter modeling as main source of drillstring undamped (or
weakly damped) oscillations. Following a quite large stream of
research as reflected in the published literature, the drillstring

978-1-5386-4444-7/18/$31.00 ©2018 IEEE

will be considered as having distributed parameters. The model
itself will be obtained using the variational approach using
the Hamiltonian Mechanics [8] adapted to distributed parame-
ters [9], [10] and the standard Euler Lagrange variations [11].

The model of the coupled torsional and axial vibrations will
be obtained and compared to that in common use in physics
and engineering [12], [13]. Comments on the significance will
accompany each relevant step of the modeling. Next the anal-
ysis will focus on the axial vibrations since this model is less
studied within the framework of the distributed parameters.
Following [14]-[16] and our own methodology [17], [18] there
is associated to the initial model a system of coupled delay
differential and difference equations; the connection of the
two kinds of mathematical models is given by the one to one
correspondence between their solutions.

From now on the analysis deals with the aforementioned
system of functional equations which turns to be of neutral
type. Since it is linear, as the source system of partial differ-
ential equations, the characteristic equation is of interest for
inherent stability studies. Here a major difficulty occurs: the
difference operator is only marginally (not strongly) stable, be-
ing thus in a critical case. Consequently the system of neutral
equations (and, with him, the initial one) can display some
“ugly i.e. unpleasant” phenomena which had been reported
long ago [19] but were forgotten after the spread of the strong
stability assumption due to J.K. Hale and M. A. Cruz [20].
The fact that such limit cases can occur in applications (and
not as mathematical curiosities/pathologies) gives to the entire
problem a new perspective. For the given drillstring model an
approach based on singular perturbations is suggested. Other
open problems are pointed out in the Conclusion section.

II. MODELING THROUGH THE VARIATIONAL APPROACH

I1.1 Kinetic and potential energies. The first step in this
approach to modeling is to write down the system energy. The
kinetic energies are as follows

L
Sro(t) = % InOm (£)? + 6, (L,1)* + /0 P ()1,(5)6,(s,)*ds
(D

represents the rotation kinetic energy, where the following
notations have been made

Jms Jp - the moment of inertia of the driving mechanism for
the rotation motion and of the bit, respectively;

O (t) - rotation angle of the driving motor;
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p(s) - distributed density of the drillstring shaft (space
dependent);

I,,(s) - polar momentum of the drillstring shaft - a geometric
parameter (space dependent);

0(s,t) - rotation angle of the drillstring shaft at time ¢ and
space coordinate s, 0 < s < L; here and elsewhere L is the
length of the drillstring shaft

It will appear later that a certain difference between 6,()
and the rotation angle of the drillstring shaft does exist,
accounting for the elastic torsional strain of the drillstring
v(s,t)

V(S,Z‘) :e(sat)_em(t) 2

Next

L
moir (£)2 -+ myz (Lot) + /0 p(s)T(s)z: (s, 1)ds
3)

represents the linear motion kinetic energy, where the follow-
ing notations have been made:

mg, my, - the mass of the vertical driving mechanism and of
the bit, respectively;

z(s,t) - the shaft linear motion coordinate: we have, as in
the rotation case

1
51(11@):5

Z(sat):C(Svt)+ZH(t) (€]

with {(s,7) - the linear elastic strain;
I'(s) - the cross section area of the shaft.
The potential energies accumulated through shaft deforma-

tion are as follows
Epgt 2/G $)Vs(s,1) dsf/G 5,1)2ds
()

where G(s) is the shear modulus, represents the potential
energy associated with torsion. Next
5)zs(s,1)*ds

Epr(t 2/ (8)&;(s,1) dS*/E o

represents the potential energy; here E(s) is the Young elastic-
ity modulus, associated with compression/stretching. An addi-
tional mention for the notations: for the distributed variables
i.e. O(s,t), z(s,t) etc, the indices ¢, s denote partial derivation
with respect to that variable and repeated indices mean second
order or mixed partial derivation.

Here one has to mention that according to the form of the
potential energies, one type of shaft or another may result
(Bernoulli, Timoshenko etc - see [21]). For (5) and (6) the
string model is obtained i.e. the simplest case of distributed
parameter shaft modeling.

I1.2 Forces and momenta. The next step is to write down
the active momenta and forces. For rotation we shall have the
following momenta

7,(t) - the active momentum that rotates the shaft - it can
result as an output of the driving mechanism;

7,(t) - the damping momentum at motor’s shaft; we assume
that 7,(t) = —Y.0,(1);

7(t) - the momentum that is transmitted to the load; we
assume that Ty (t) = 16, (1);

T(t) - the load momentum of the shaft; we assume that
(r) = —¥6;(0,1) (the momenta 7;(t) and 7,(r) appear as
virtual momenta when separating the motor shaft from the
drilling shaft; these momenta would have been equal for
perfect rigidity - zero elastic strain);

74(s,¢) - the distributed friction momentum: t,(s,t) =
Yo ()Lp(s) 8 (5,0):

T,(t) - the load momentum at the bit: we assume, according
to [1], [12], [13], that 7, (¢) = —T}(6;(L,7) where T,(0) is one
of the functions described in the aforementioned references.

Except the load momentum, all dependencies are assumed
linear with the proportionality coefficients 7y, 7| etc; their
physical dimension is thus clear.

Using the momenta thus defined we are in position to write
down the work of the momenta in the rotation motion

W (1) = (Ta(t) + To(t) + 12(1)) O (1) + 71 (1)0(0,1)+

L )
+ /0 Ta(5,1)8 (s, 1)ds + 7, (1) O (L,1)

Note that the expressions of the momenta are to be sub-
stituted in #},9(¢) but only after applying the variational
principles: for the work there is applied the principle of the
virtual displacements - only the generalized coordinates are
subject to the variations (not the forces/momenta) [8].

For the vertical motion we shall have the following forces
which are involved in the work

fu(t) - the active force that regulates ground penetration; it
can result as an output of the brake motor incorporated in the
driving mechanism;

fo(t) - the damping force within the driving mechanism; we
assume that f,(t) = =y 0zu(t);

S1(t) - the force that is transmitted to the load; we assume
that fi(t) = v"izu(1);

f2(t) - the load force f>(r) = —v”1z:(0,7) (here also forces
Jf1 and f, appear as virtual forces when separating the drive
from the drillstring; they would have been equal for perfect
rigidity - zero elastic strain);

fa(s,t) - the distribute friction force on the vertical:
Ja(s;t) = = ()T (s)z (s5,);

f»(t) - the friction force at the bit, induced by the friction
momentum and assumed to be

folt) = = Ty(6/(L1)) ®

UKR),

where we denoted: R;, - the bit radius; x - the conversion
coefficient of the rolling friction into sliding friction; u - a
friction coefficient.

Here also, except the load force at the bit, all dependencies
are assumed linear with the proportionality coefficients y”,,
Y’1 etc; their physical dimension is thus clear.
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We are now in position to write down the work of the
aforementioned forces

Wnrt (t) = (fu (1) + fo (1) + f2())z (1) + f1(1)2(0,1) +
©))

L
+ [ falsn)z(o0)ds + £y (0(L0)
0

(Here also the expressions of the forces are to be substituted
in #,,1 () only after applying the variational principles: under
the principle of the virtual displacements, only the generalized
coordinates are subject to the variations).

II.3 Variations and resulting equations. We write down
the complete Hamiltonian, incorporating the work of the ex-
ternal forces and momenta and the functional to be minimized

I(t1,0) = Ig(t1,02) + I (t1,12) =

)

= [ (&o(t) — Epalt) + Wyg(t))dr+ (10)

+ [ (60 = Eo)+ W (1))

This functional is quadratic. Following the standard procedure
we consider the Euler Lagrange variations of the generalized
coordinates with respect to some trajectory supposed to ensure
the minimum of (10) [11]

0(s,1) = O (1) =
2(s,t) = z(s,¢) + €8 (s,2) 5 zu(t) = Zu(st) + €Cp(7)

0(s,t) +€0(s,1) ; On (1) + €0 (1) ;

We thus obtained the perturbed functional I%(¢;,f,) which
is quadratic in €. The necessary extremum conditions are
obtained from

d
—I(11,1) [e=0 =0

dr (D)

Following the methodology of [11], see also [18], the follow-
ing equations are obtained: a) for the torsional vibrations

=P ()1p(5) 60 + (G (5)Ip(5)65)s — Yo (s)Ip(5)6: = 0

IO+ Ta(t) —3/06,,1'— 7/6,(0,1) =0 12
G(0)1,(0)65(0,1) +7/0(1) =0
—Jp6 (L,t) — G(L)I,(L)6s(L,t) — T5(6;(L,t)) =0
b) for the axial vibrations
—p()T(s)zu + (E(s)T(s)z5)s — Y ()T (s)z = O
—moZn + fu(t) = Voin — ¥ 12:(0,t) =0 (13)

E(0)[(0)zs(0,7) +¥'zu(t) =0

—MpZst (Lat) - E(L)F(L)ZS(Lat) - Tb(ef (Lvt)) =0

The similarity of the two sets of equations is obvious. In
both cases they define non-standard boundary value problems
for hyperbolic partial differential equations. Since we dis-
cussed the torsional vibrations in several papers, the present
paper will focus on the equations of the axial vibrations.

III. THE BASIC THEORY FOR THE MODEL OF THE AXIAL
VIBRATIONS

II1.1 Some remarks on the model. We shall start here from
the basic model (13) where the active force fy(¢) is used as
a control signal and f,(t) = —2(uxRy)~'T(6,(L,1)) is also
an external force (from the system describing the torsional
vibrations) and represents the perturbation signal. Overall
system (13) describes a structure with distributed parameters -
a propagation equation with non-standard boundary conditions
- containing ordinary differential equations at the boundaries.

Another observation concerns the state variables z(¢) and
z(s,t): they enter in (13) only by their time and space deriva-
tives - they are cyclic variables and the order of the equations
can be thus reduced.

The final remark at this level of generality concerns the
comparison to the model considered in [13]. By taking m, =
0 in (13) and relying on singular perturbations, this system
reduces to

—P()T(s)z + (E()T(s)z5)s — Y ()T (s)z = O
KEOTO(0.0) = (1 22(0.0) + (f Pfu(t) =0
—MpZs (La t) - E(L)F(L)ZS(La t) + fb(t) = O
which has the same structure as the model denoted by (17a)-
(17b) in [13].
III.2 The symmetric Friedrichs form. We continue the
analysis at this level of generality, for a while, by introducing

for (13) and (14) the so called symmetric Friedrichs form with
the new variables

v(s,t) =z (s,1) , w(s,t) :=2z5(s,t) ; vu(t) :=zm (1)

(Observe that v(s,t) is a velocity and we introduced also the
local velocity vy (¢) :=zu(¢) at the ground level - taking into
account that the state variables are cyclic. Consequently system
(13) becomes

—p()L(s)vi + (E(s)T(s)w)s — yu(s)T(s)v =0
w, —vs =0 ; E(0)[(0)z(0, t)—i—j/’vH( =0
—MeVE — Yo VH — ’)/”IV(O,Z) +fH(t) -

E(L)TC(L)w(L,1)+ fo (f) =0

(We do not reproduce the new form of (14) since it follows
from (16) by taking m, = 0 and eliminating vy between the
two equations at s = 0).

IIL.3 Steady states. We discuss next the steady states of
(16) which correspond to a constant axial speed and a constant
elastic strain; both fy and f; have to be assumed as having
constant values: f, will be constant since the steady state
angular velocity 6; is constant and fy is proportional to some
axial velocity supplied by the brake motor of the drive. The
steady state equations will be

— Y ()¥(s) + (E(s)T(s)w(s))s =
EO)T(0)w(0)+ 7" =0,
Yo —V19(0) + fu =0
—E(L)T(L)%(L)+ f, =0

(14)

5)

(16)

—mpv; (L,t) —

, Us(s) =0

a7)
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and their solution reads as follows

1 - 1 -
————Jvs VE=—JH
i V’of

E(LT(D)
St e <m+ [ m(MdA)]

(18)
III.4 The Riemann invariants and the functional dif-
ferential equations. From now on we shall follow the basic
assumptions of the references dealing with distributed pa-
rameters of the drillstring - see [1], [13], also their lists of
references. We shall assume homogeneous materials for the
drillstring i.e. the parameters E, I', p, vy to be independent
of s and also take yy = 0 (negligible) - the consequences of
neglecting the internal material damping of the drillstring will
be discussed later. Under these circumstances equations (16)
take the form

Yl 1 -

= 7 EOrm

pvi—Ewg =0, w,—v;=0
EFW(O,I) + }/”IVH(I) =0, myvg+ 7 ovy + y”,v(O,t) = fH(I)
mpvi(L,t) + ETv(L,t) = fp(t)
(19)
The basic theory (existence, uniqueness and continuous data
dependence) will be constructed for (19) based on a method
announced firstly in [17], described later in several papers of
the first author and having a quite definite form in [18]; this
method was inspired by the papers [14]-[16]. The approach
consists in the following steps: 1° Introduce the Riemann
invariants w® (s,t) by

wE(s,1) =v(s,1) Teaw(s,t) , ca=E/p (20)
and the converse
W(5,1) = 2w (5,0) + w7 (5.1))
2 b3

Ww(s,1) = Z—;W (5.8) = W' (s,1))

to obtain instead of (19) the system
wii+wE=0

Y va(t)+ g(w’(o,t) —wH(0,1))=0
MoV + Y ovi + (V1/2)(w* (0,1) +w™(0,1)) = fu (1)

iy (L) +w (L))

FEL (0 (0,0) —wH(0,0)) = 2 (1)
’ (22)
2° The Riemann invariants are constant along the charac-
teristic lines t*(0;s,t) =t + (0 —s)/c, - the forward wave
w (s,¢) along 1 (0;s,1) and the backward wave w™ (s,7) along
t~(o;s,t). Without details - the reader is sent to [18] - the

following system of coupled delay differential and difference
equations is associated

mad;—f + (Y”o—i— cg;’l) va+ Yy (t—L/c,) = fu(t)
d r 2ET
2+ By - Ly e =200

a

Y0 =y (- Leg) + 2L
-

(1) = =y (t =L/ca) +vp(1)

VH(I)

(23)

and the following basic result is true
Theorem 1: Consider the initial boundary value problem
(19), having vy (0), vo(s), wo(s), 0 < s <L, a set of sufficiently
smooth initial conditions, the Riemann invariants (20)-(21)
and the initial boundary value problem (22) with the initial
conditions vy (0), w(s,0) = v,(s) F cawo(s), 0 < s < L. Let

(v (t),w*(s,t)) be a classical solution of (22) and define the
functions
wt(t) =wh(L,t) , u (1) :==w (0,) ; y= (1) ;= ub(t+L/cy)

(24
Then the functions (vy(t),vy(t),y*(t)) are a (possibly discon-
tinuous) solution of (23) defined by the initial conditions

vi(0) , vp(0) =vo(L) , i (t) = vo(—cat) = wo(—cat)

vo (1) =vo(L+cat) +wo(L+cat) , —L/ca <t <0
(25)

Conversely, let (vy(t),vy(t),y%(t)) be a (possibly discontin-
uous) solution of (23) defined by some initial conditions. Then
the functions (vi (t),v(s,t),w(s,t)) where v(s,t) and w(s,t) are
defined by (21) and w*(s,t) by the representation formulae

wh(s,t) =yT(t—s/ca) , w(s,t) =y (t+(s—L)/cs) (26)

are a classical, possibly discontinuous solution of (19) with
the initial conditions resulting accordingly.

The proof of this theorem can be done following the
methodology of [18] - the proof of Theorem 3.1 - and we
shall omit it. Its significance is however rather important: it
states a one to one correspondence between the solutions of
two mathematical objects: the initial boundary value problem
(19) (or (22)) and the system of functional equations (coupled
delay differential and difference) (23). Consequently all results
obtained for one of them are automatically projected back on
the other.

IIL.5 The basic theory. Now, system (23) belongs to the
class of functional differential equations of neutral type. The
simplest proof of this assertion is to substitute vy (¢) and vy (7)
from the difference equations into the differential ones and
obtain a neutral system. But (23) itself is of neutral type
according to the by now classical reference [16]. Also the fact
that its solutions are neither smoothed in time nor loosing their
smoothness puts system (23) in the class of neutral systems
according to the classification of G.A. Kamenskii [19].

The construction of the solution of (23) can be done by
steps: the solution has the smoothness of its initial conditions
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and discontinuities at t = kL/c,, k=0,4+1,42,... (as for any
system of neutral type the solution can be constructed forward
and backward also). Being a linear system, uniqueness and
continuous data dependence are ensured.

Conversely, the representation formulae (26) will ensure the
same properties for the discontinuous classical solution of (18).
Moreover, if one takes into account a result of Hale concern-
ing the theory of neutral functional differential equations on
Sobolev spaces, the way to the generalized solutions [14] is
thus open. We end here the discussion concerning the basic
theory.

IV. INHERENT STABILITY OF THE SYSTEM OF AXIAL
VIBRATIONS

Some time ago there was introduced the concept of model
augmented validation [18]. Following the line of the Stability
Postulate of N. G. Cetaev [22] it was stressed in the aforemen-
tioned cited papers that inherent stability should be considered
a distinct and necessary step in validating a mathematical
model, together with basic theory (well posedness in the sense
of J. Hadamard).

IV.1 Inherent stability. We consider here stability of (23)
with f(¢) = f,(¢#) = 0. This autonomous system of neutral
type is in a critical case: the basic assumption of strong
stability for the difference operator does not hold; the matrix
D defining this operator has +: as eigenvalues. If however the
time constant m,(y’, + (ca¥”)(ET)~1)~! can be considered
small with respect to e.g. the time constant myc,(ET) ™!, then
this fast dynamics can be neglected (relying on singular per-
turbations) to obtain the reduced system of the slow dynamics

dv, ET  2ET
by 2y, t—L/cg) =0
K + o Vb o ¥ ( /ca)
> EF s 72. »\2
y+([) _ VO +Cayl Ca(y’ l) y_(lfL/Ca) (27)

Y oET + a7
y () = =y*(t—=L/ca) + vo(t)
The difference operator of (27) will be strongly stable if

the coefficient p of y~(+ —L/c,) in the second equation will
satisfy |p| < 1 and this condition holds iff

1 ET
0<y <= (1 +4/1 +4r’0—>
2 Ca

We shall thus discuss first stability of (27) whose charac-
teristic equation is

(28)

p(A) = (campA + ET)e? /4 p(comph —ET)  (29)

Defining some elementary changes of variables in (29) the
stability problem is reduced to the location of the roots of the

quasi-polynomial
Amy, 1+pe® 2

@) = (o+
1—pe* ETL « 1pe"‘) .
7+ - sinh z
(1 +pe®”  Amy 2 14 pe®

ETL 1—pe* o
pe —)coshz+

(30)

in the left half plane Re(z) < 0 for a > 0 sufficiently small.
This will give the roots of (29) in Re(A) < —oic,/2L. The ap-
proach to be used is the sharpest one, based on the generalized
Sturm method [23]. Firstly we shall consider the generalized
necessary conditions of Stodola type - see [23], page 264,
then the necessary and sufficient conditions resulting from the
analysis of the Sturm sequence. It turns out quite easily that
by choosing o > 0 sufficiently small to have

2ETL
c2my,

1+ pe”
1 —pe*

€19

then the roots will result in Re(z) < 0 - see [23], page 296.
The aforementioned result, ensuring location of the roots
of (29) in Re(A) < —acy/2L, suggests examination of the
critical case of (23) based on singular perturbations i.e. for
m, > 0 sufficiently small.
IV.2 Inherent stability in the critical case. We consider
now the characteristic quasi-polynomial of (23)

_ .V ET
p(A) = (mok*FY,o*F ET ) <mbl+a>

- (mol +7o+ cal s (1- Y”l)) (mbl - Iz"_l") e AL/ ca

ET
(32)
Let A =s— o, a >0 hence Re(s) <0< Re(A) < —oa. We
shall have

L L
e(S*O‘)L/Cap(S —o)= [—2m0mb (sinh OC_) sS4 :| cosh =

Ca Ca

+ [Zmomb <cosh a_L> s+ ] sinh E
Ca Ca

and the two coefficients of the quadratic terms have opposite
signs. Therefore p(s— a) cannot have its roots in Re(s) <O -
see [23], page 264. It follows that there is no ¢ > 0 such that
the roots of (32) lie in Re(A) < —a. On the other hand by
taking o < 0 it is not difficult to find that (32) has no roots
the right half plane.

We check now if the roots of (32) lie at least in Re(A) < 0.
Applying the Sturm method - see again [23] - we find that
(32) is in a limit (marginal) case ( [23], page 288) hence it
can have some roots on the imaginary axis.

At the same time the asymptotic properties of the quasi-
polynomials arising from neutral equations in the critical case
of the difference operator show that even some chains of roots
in the left half plane can accumulate asymptotically to the
imaginary axis without crossing it - see [24] or [25]. A dis-
cussion of such cases can be found within the “Supplementary
remarks” at Chapter 9 of [26]; it points out to non-uniform
asymptotic stability in the best case.

V. SOME CONCLUSIONS AND PERSPECTIVE PROBLEMS

The underlying philosophy of this paper is that control of
some physical phenomena displayed by an industry device
can ensure improved performance if it relies on a sound
mathematical model. For this reason the problem of drilling
vibration modeling - for both torsional and axial vibrations

103



- has been tackled in all its generality. More specific, the
modeling was considered within the variational approach of
the Hamiltonian Mechanics. It became quite clear that the
quality of the model strongly depends on the “list” of external
forces and momenta included in the model of the mechanical
work. The fact that the equations for the torsional and axial
vibrations are quite decoupled and can be treated separately is
due to the chosen model of the bit-rock friction force and/or
momentum.

The paper focused on the axial vibrations whose model
resulted linear with external control and perturbation signals.
The rather complete list of forces and momenta led to a model
that displayed a critical case of stability. To be more specific,
in the paper there has been used the approach of integrating the
Riemann invariants along the characteristics and associating a
system of functional differential equations of neutral type. The
difference operator of the system of neutral type results only
marginally (critically) stable instead of strongly stable. Such
“pathologies” have been discussed long ago [19] and easily
forgotten because not reported in physics, engineering and
other applications. Now we were facing exactly an application
of this kind. Neglecting a (presumably) small parameter (not
present in earlier models) the difference operator became
strongly stable and the model got exponential stability. A
possible use of singular perturbations theory is thus suggested.

According to our opinion, the main perspective problems
connected to the drilling vibrations are thus of mathematical
nature. Criticality of the difference operator induces in fact
hidden oscillations due to weakly damped modes: such modes
are associated to those roots of the characteristic equation
which accumulate asymptotically to the imaginary axis while
being located in the left half plane. They define probably
a series [27] which is not uniformly convergent. If the
frequencies associated to it define an increasing sequence (our
conjecture) then they might be quenched by the feedback
control provided the closed loop bandwidth is narrow enough
(another conjecture of ours). Finally the third conjecture might
be connected to the role of the neglected internal distributed
damping of the drillstring: the associated functional equations
might display a strongly stable difference operator.

ACKNOWLEDGMENT

This work has been supported by a grant of the Romanian
National Authority for Scientific Research and Innovation,
CCCDI UEFISCDI, project number 78 BM.

REFERENCES

[1] M. S. Mérquez, 1. Boussaada, H. Mounier, and S. I. Niculescu, Analysis
and Control of Oilwell Drilling Vibrations. A Time-Delay Systems
Approach, ser. Advances in Industrial Control. Berlin. Basel. London:
Springer, 2015.

[2] M. B. Saldivar, “Analysis, modeling and control of an oilwell drilling
system,” Ph.D. dissertation, Centro de Investigacin y de Estudios Avan-
zados del Instituto Politcnico Nacional, Mexico. Institut de Recherche
en Communications et Cyberntique de Nantes, France, 2013.

[3] M. A. Kiseleva, “Oscillations and stability of drilling systems: Ana-
lytical and numerical methods,” Ph.D. dissertation, St. Petersburg State
University. School of Mathematics and Mechanics Russia, 2013.

[4]

[5]

[6]

[7]

[8]
[9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

D. Bresch-Pietri and M. Kirsti¢, “Output-feedback adaptive control of a
wave pde with boundary anti-damping,” Automatica, vol. 50, pp. 1407-
1415, 2014.

A. Serrarens, M. van-de Molengraft, and L. van-den Steen, “/., control
for suppressing stick-slip in oil well drillstrings,” IEEE Control Systems,
vol. 18(2), pp. 19-30, 1998.

C. Canudas de Wit, F. R. Rubio, and M. A. Corchero, “D-oskil: A new
mechanism for controlling stick-slip oscillations in oil well drillstrings,”
IEEE Transactions on Control Systems Technology, vol. 16(6), pp. 1177—
1191, 2008.

M. A. Kiseleva, N. V. Kondratyeva, N. V. Kuznetsov, and G. A. Leonov,
“Hidden oscillations in drilling systems with salient pole synchronous
motor,” IFAC PapersOnlLine, vol. 48-11, pp. 700-705, 2015.
H. Goldstein, C. P. Poole, and J. Safko, Classical Mechanics.
Pearson Addison Wesley, 2011.

L. Meirovitch, Elements of Vibration Analysis.
Hill, 1975.

——, Methods of Analytical Dynamics.
Publications, 1998.

N. Akhiezer, Variational calculus (in Russian).
“Vis¢a Skola” Publ. House, 1981.

B. Saldivar, I. Boussaada, H. Mounier, S. Mondié, and S. I. Niculescu,
“An overview on the modeling of oilwell drilling vibrations,” IFAC
Proceedings Volumes, vol. 47-3, pp. 5169-5174, 2014.

B. Saldivar, S. Mondié, S.-I. Niculescu, H. Mounier, , and 1. Boussaada,
“A control oriented guided tour in oilwell drilling vibration modeling,”
Annual Reviews in Control, vol. 42, pp. 100-113, 2016.

V. E. Abolinia and A. D. Myshkis, “Mixed problem for an almost linear
hyperbolic system in the plane (russian),” Mat. Sbornik, vol. 50:92, pp.
423-442, 1960.

K. L. Cooke and D. W. Krumme, “Differential-difference equations
and nonlinear initial-boundary value problems for linear hyperbolic
partial differential equations,” Journal of Mathematical Analysis and
Applications, vol. 24, pp. 372-387, 1968.

K. L. Cooke, “A linear mixed problem with derivative boundary con-
ditions,” in Seminar on Differential Equations and Dynamical Systems
(II), ser. Lecture Series, D. Sweet and J. A. Yorke, Eds. College Park:
University of Maryland, 1970, vol. 51, pp. 11-17.

V. Résvan, “A method for distributed parameter control systems and elec-
trical networks analysis,” Rev. Roumaine Sci. Techn. Série Electrotechn.
Energ, vol. 20, pp. 561-566, 1975.

, “Augmented validation and a stabilization approach for systems
with propagation,” in Systems Theory: Perspectives, Applications and
Developments, F. Miranda, Ed. New York: Nova Science Publishers,
2014, pp. 125-169.

L. E. EI'sgol’ts and S. B. Norkin, Introduction to the theory of differen-
tial equations with deviated argument (in Russian). Moscow (USSR):
“Nauka” Publ. House, 1971.

M. A. Cruz and H. J. K., “Stability of functional differential equations
of neutral type,” J. Differ. Equations, vol. 7, pp. 334-355, 1970.

D. L. Russell, “Mathematical models for elastic beams and their
control-theoretic implications,” in Semi-Groups: Theory and Applica-
tions, H. Brézis, M. G. Crandall, and F. Kappel, Eds. Essex: Longman,
1986, vol. 2, pp. 177-216.

V. Rédsvan, “The stability postulate of n. g. Cetaev,” IFAC PapersOnLine,
vol. 50(1), pp. 7450-7455, 2017.

N. G. Cebotarev and N. N. Meiman, “The routh-hurwitz problem for
polynomials and entire functions,” Proc. Mat. Inst. Steklov, vol. 26, pp.
3-331, 1949.

R. E. Bellman and K. L. Cooke, Differential Difference Equations, ser.
Mathematics in Science and Engineering. New York Toronto London:
Academic Press, 1963, vol. 6.

A. M. Zverkin, “Series expansions of solutions of differential difference
equations. i: quasi-polynomials (in russian),” Proc. Seminar Theory of
differential equations with deviated argument, vol. 3, pp. 3-38, 1965.
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional
Differential Equations, ser. Applied Mathematical Sciences. New York
Berlin: Springer, 1993, vol. 99.

A. M. Zverkin, “Series expansions of solutions of differential difference
equations. ii: series expansions (in russian),” Proc. Seminar Theory of
differential equations with deviated argument, vol. 4, pp. 3-50, 1967.

London:
New York: McGraw-
Mineola New York: Dover

Kharkov (USSR):

104



